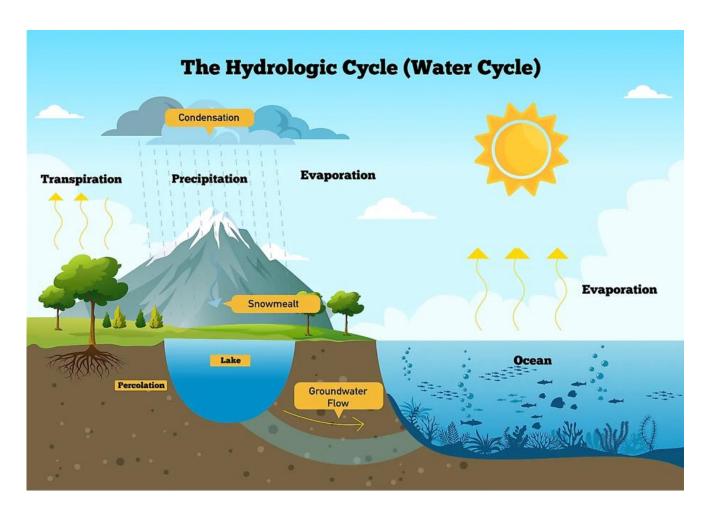


Evidence and Solutions for improving **SPONGE** Functioning at Land**SCAPE** Scale in European Catchments for increased Resilience of Communities against Hydrometeorological Extreme Events

How to model floods and droughts?

Andreja Kopač

Slovenian Environment Agency



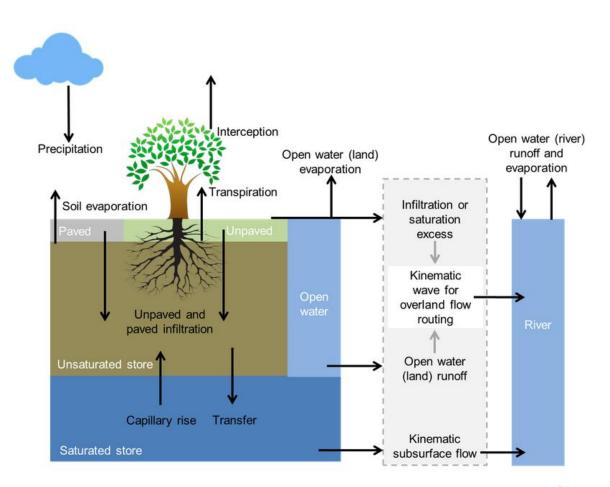
Content

- Modelling of water cycle
- Hydrological modelling
- Wflow, HydroMT-Wflow
- Hydrometeorological events selection
- Model setup
- Model calibration and validation
- Model simulation

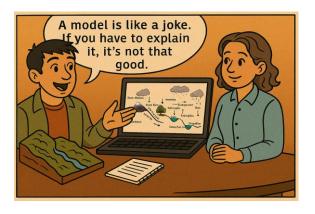
Water cycle modelling: What is it all about?

Why do we want to model water cycle?

- to understand how much water is available.
- to predict, monitor and manage extreme weather events (floods and droughts)
- to manage water resources sustainably
- to understand the impact of human activities and climate change on water resources

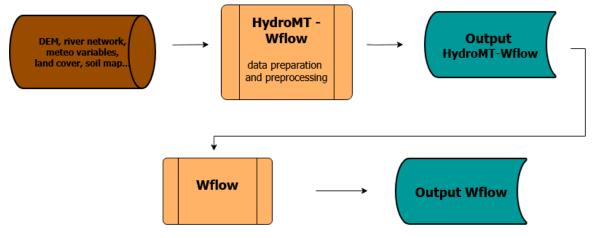

SpongeScapes: using the models to evaluate the efficiency of sponge measures

$$P = ET + Q + dS$$


Water cycle modelling: model types

- hydrological models (water flow over the surface and through the soil; from rainfall to runoff)
- hydrodynamic models (river flow)
- groundwater models (water flow through aquifers)
- Hydrological models
 - Wflow:
 - sbm
 - spatially distributed: each cell has its own state (e.g. moisture, runoff)
 - simple concept: water enters (precipitation), leaves (evaporation, runoff) and is stored (in the soil)

HydroMT-Wflow and Wflow

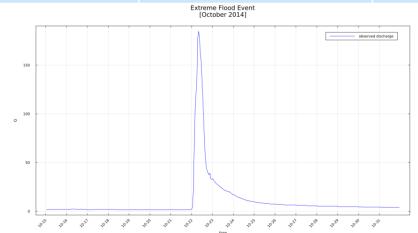

Modelling process:

Hydrometeorological events selection

Model setup

Model calibration and validation

Model simulation

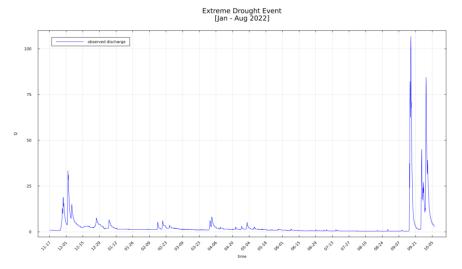


Hydrometeorological events on Gradaščica catchment: floods

Flood event category	General consequences	Flood event ecological effect	Required Flood risk management level	Gradaščica
Extraordinary	Agricultural areas are flooded, local flooding of roads and less important facilities. Potential of significant damage to crops. Minor soil erosion/loss. Beneficial fine sediments delivered to floodplains.	Presence of beneficial and harmful effects on ecological functioning	1 Low (the event should be easily managed, damage on flood risk measures not expected)	25.07.2023 (consequences: the second high water level was exceeded, which caused flooding; flooded local roads)
Extreme	Extensive flooding including exposed settlements and industrial zones. Significant damage to crops, infrastructure and buildings. Considerable soil erosion/loss. Presence of bank erosion and debris flow.	Temporary harmful effects on ecological functioning, especially due to excessive risk for increased pollution loads, but recovery is feasible.	2 Medium (the event should be managed with sufficient measures, damage on flood risk measures expected)	22.10.2014 (consequences: flooded main roads, residential and commercial buildings)

Other event categories:

- ordinary
- exceptional



Hydrometeorological events on Gradaščica catchment: droughts

Drought event category	General (economic) consequences	Drought event ecological effect	Required drought management measures	Gradaščica
Extraordinary	Substantial economic losses across multiple sectors, including agriculture, tourism, and energy production	Moderate harmful effects on ecological functioning	1 Moderate measures (mandatory water use restrictions)	3 months with SDI≪0 (July – Sept. 2012)
Extreme	Severe economic losses across all sectors	Severe harmful effects on ecological functioning	2 Emergency measures (crisis management, emergency water distribution centres)	8 months with SDI«0 (JanAug. 2022, June-Aug. SDI = -2) (consequences: indirect - fish mortality along with probable water pollution)

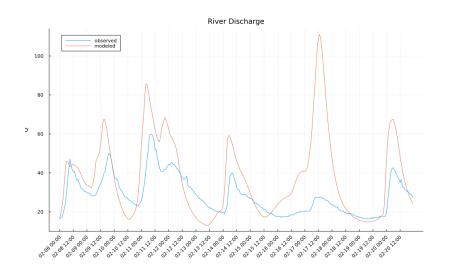
HydroMT-Wflow: Model setup

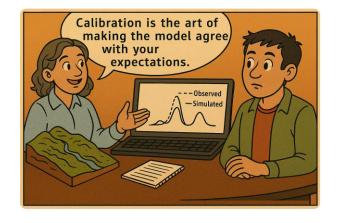
Data preparation and preprocessing

- decisions about:
 - resolution (50m → 250m);
 - observation period,
 - time-step (daily, hourly),
 - modelling subcatchments
- input data: DEM, river network, precipitation, temperature, pressure, sun radiation, land cover, soil map, LAI...

event: 15.10.2014 - 31.10.2014, but: longer period to provide the warm state of the model (2012 – 2014)

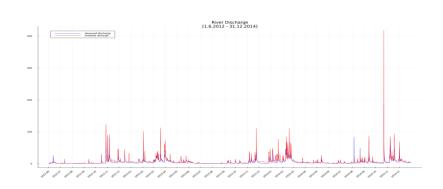
- HydroMT-Wflow creates:
 - staticmaps: land cover, soil map, soil infiltration capacity, vertical saturated conductivity, leaf area index, crop coefficient...(around 90 parameters)
 - forcing file: precipitation, temperature, pet

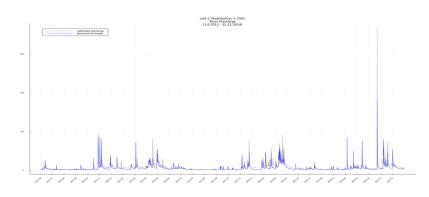


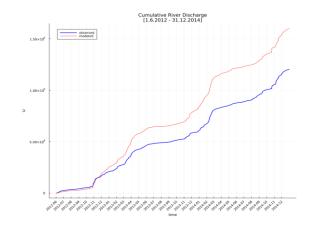


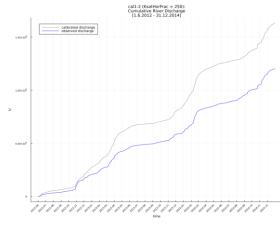
Wflow: Model calibration

- Wflow output: discharge at the outlet, also possible to obtain discharge on other gauges
- comparison of observed and modeled discharges
- calibration goal: modeled discharge are as close as possible to observed discharge values
- calibration period: longer time period including different hydrological conditions
- calibration method: setting different values of selected parameters
 - vertical and horizontal saturated conductivity
 - snow parameters




- 3 options for setting parameter values:
 - uniform value
 - different values per subcatchments
 - values related to other spatial units (land cover, soil map)
- model performance quantification:
 - Nash-Sutcliffe Efficiency (NSE)
 - Normalized NSE: NNSE (easier interpretation)
 - Kling-Gupta efficiency (KGE)
 - RMSF




Wflow: Model calibration and validation

Model calibration

Model validation

- goal: to ensure the model is robust, reliable and suitable for future use
- the process of evaluating a model's ability to accurately simulate real-world hydrological conditions, using independent data (not used during calibration)
- efficiency criteria

NNSE base: 0,553

NNSE calibrated: 0,647

Wflow: Model simulation

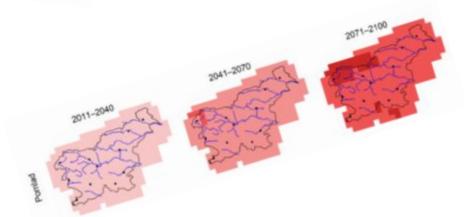
- identification of the key model parameters representing the sponge measure
- preparation of the simulation matrix
- running the model simulations with different "level" of sponge measures in the catchment for current climate state
- running the model simulation for future scenarios
- evaluation of the simulation results through the technical indicators

iand cover change.

key model parameters:
change of leaf storage.
crop coefficient...

land cover change:

forest: 0% - 100% coniferous forest ↔ mixed forest simulation matrix:


events x
key parameter settings x
various initial
states of the model
(dry, normal, wet)

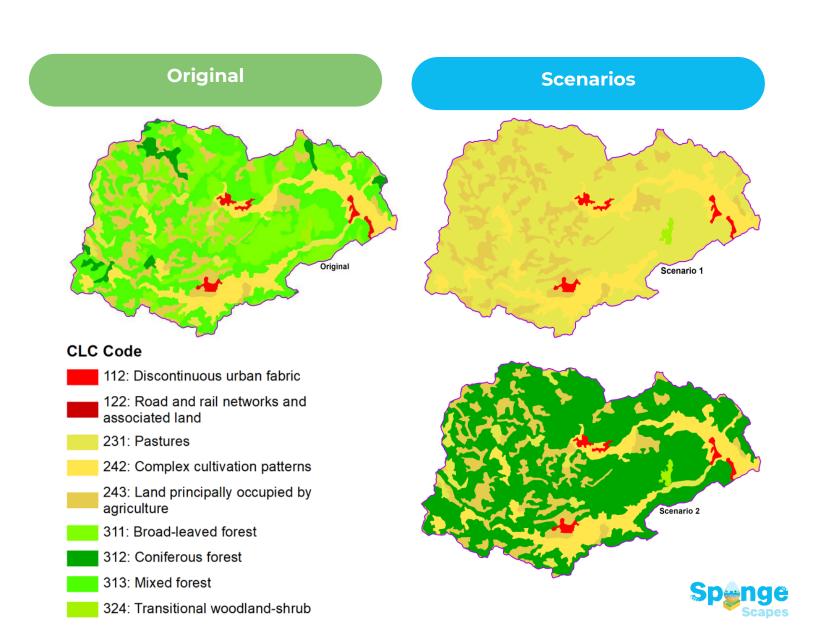
technical indicators:

change in storage,

change in peak flow,

change in baseflow,

Model simulation: Land cover scenarios


Testing the impact of different share, types and locations of forest in the catchment

Associated parameters:

- extinction coefficient (to calculate canopy gap fraction)
- o fraction of compacted area
- o root depth
- o leaf storage
- wood storage
- fraction of open water (excluding rivers)
- o crop coefficient...

Pilot catchment (Gradaščica):

- o 160 km²
- o almost 70% forest

Andreja Kopač, ARSO andreja.kopac1@gov.si

www.spongescapes.eu

in X @spongescapes

Consortium partners

SpongeScapes has received funding from the European Union's Horizon Europe research and innovation programme under Grant Agreement n°101112738 and from the UK Research and Innovation/HM Government.