

Evidence and Solutions for improving **SPONGE** Functioning at Land**SCAPE** Scale in European Catchments for increased Resilience of Communities against Hydrometeorological Extreme Events

How do Sponge Measures Work? Monitoring & insights from the field

Alejandro DUSSAILLANT aledus@ceh.ac.uk

WP2 Monitoring lead, UK Centre for Ecology & Hydrology (CEH)

UK Centre for Ecology & Hydrology

SpongeScapes in short

European partners Deltares project coordinator Case Studies across 7 EU countries

Sponge measures?

Sponge measures <u>absorb</u>, <u>store</u>, and <u>slowly release</u> water, mitigating floods and droughts and providing lasting benefits.

SpongeScapes objective?

Accelerate towards solutions that improve the sponge functioning of soil, groundwater, and surface water landscapes.

Upscale individual "sponge measures" into overarching "**sponge strategies**" at the landscape scale.

SpongeScapes Case Studies

• 14 case studies

- Chaamse beken catchment (NL)
- 2 Aa and Maas catchment (NL)
- 3 Riseholme stream (UK)
- Evenlode catchment (UK)
- S New Forest & Cole catchments (UK)
- Opper Thames agricultural sites (UK)
- Opper Biebrza catchment (PL)
- Lèze catchement (FR)
- Timonchio site (IT)
- Municipality of Santorso sites (IT)
- Agripolis site (IT)
- Bosco Limite (IT)
- I Gradaščica catchment (SI)
- 🤒 Kavouropotamos stream (GR)
- 140 recorded cases of sponge measures
- **3 different sponge measure categories** (surface water, surface-groundwater, and soils-vegetation)
- diverse soils (sandy, silty, clayey, peaty, calcareous)

➔ monitor their performance under different types of hydrometeorological events

4 different climatic zones

- Atlantic Central
- Nemoral

۲

- Mediterranean North
- Mediterranean South
- Mediterranean Mountains
- Alpine South

Monitoring (well) - why?

"If you do not measure it, you cannot manage it" – Peter Drucker

Or...if you do not monitor appropriately, then you cannot:

- 1. Have a baseline before implementation to compare it with
- 2. Assess performance, benefits (and unintended consequences)
- 3. Plan maintenance!

Design the monitoring according to:

- 1. Aims of measures (longer-term)
- 2. Indicators that are representative (monitoring locations & frequency)
 - i. Measurable and scientifically credible
 - ii. Comparable within a range of field settings across different sectors
 - iii. Replicable and scalable
 - iv. Meaningful to all key stakeholders
 - v. Combine simple, minimum required (for sustainably monitor longer-term & lower frequency; citizen science?) with more technical/golden standard (statutory/research organisations)

Monitoring - General Framework (SpongeScapes/Works)

SpongeScapes: co-developed Indicators:

- Guided by Water Retention 'Sponge Function' first
- Combined literature review, expert process understanding, and local contexts of 14 Case studies from 6 European ecoregions
- Hierarchy based on (i) key processes; (ii) ease to measure/estimate; and (iii) transversal to Case Studies types
- Determined 3 sponge measure typologies:
 - a) Surface Water measures; e.g., river floodplain reconnection, ponds and wetlands
 - **b)** Surface-Groundwater interconnection; e.g., dams and swales to infiltrate & recharge groundwater
 - c) Soil-Vegetation systems; e.g., regenerative agriculture practices

bioretention systems (rain

gardens, swales)

remeandering

Reforestation

Case Study typology groups in SpongeScapes

Surface Water

IT2 Timonchio pond FR1 Leze flood barriers UK1a Littlestock bunds, ponds, leaky barriers UK1b Riseholme ponds UK1c Lymington floodplain restoration UK1d Cole floodplain restoration

Surface-Ground Water

GR1 Kavouropotamos check dams

NL1 Chaamse barriers

NL2 Aa & Maas flow barriers

PL1 Biebrza wetland catchment

IT1abc Santoro rain gardens

IT3 Agripolis rain garden

Soil-Vegetation

UK2ab Thames infield buffer strips

UK3 Thames crop rotation

UK4ab Thames low till, greeen cover, controlled traffic

SI1 Gradascica forested catchment

IT4 Bosco Limite forest infiltration area

Water Retention Indicators: key is <a>Storage AND Release!

(fluxes, storages, timings)		CS contact MAIN IMPACT:	Kavouropo	Chaamse	Aa & Maas	Biebrza	Santorso	Agripolis	Timonchio	Leze	Littlestock NS flooded homes	Riseholme LM	Lymington IE	Cole IE	ASSIST JB	COSMOS JB	LANDWISE JB	Bosco limite (Gradascica
		MAIN MEASURE:	small dams	drain blockages	drain blockages	wetland restoration	rain garden	exp rg	pond	buffer strips & belts	corner bunds	online ponds	floodplain restoration	floodplain restoration	buffer strips	crop rotation	controlled traffic	forest infiltration	forest
Indicator (if bold easier to estimate)	abbreviation	usual units																	
Interception storage	Si	mm																х	x
Wet canopy evap	Ewc	mm/d					x	x										x	x
Surface water storage volume	Ssw	m3	x	x	x	x	x	x	x	x	×	x	x	x					
Surface water level	swl	m	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р					
Flooded area	Aflooded	m2				x	x	x	x		s	x	x	x					
Floodplain area reconnected	Arfp	m2									x	x	x	x					
Stream length restored	Lsr	m									x	x	x	x					
Stream flow velocity	v	m/s			x								x	x					
Stream peak flow	Qp	m3/s	x	x	x		Р	Р		x	Р	Р	Р	Р					Р
Time to peak	tp	h		x	x		S	s	x	x	x	x	x	x					x
Flow volume	Vf	m3	x	x		x	x	x	x	x	x	x	x	x					x
Desynchrony of tributary flows	ts (= tp1 - tp2)	h								x	x	x	x						
Depression storage	Sd	mm		x	x		x	x		x	x				x	x	x	x	x**
Time to ponding	Tponding	h					S	S											
Hydraulic roughness	n		x	x	x		x	x		x	x	x	x	x	x	x			
Runoff	r	mm					x	x		x					S	S	s		
Runoff coeffcient	rc = r/p						x	x		x					x	x	x		x
Saturated soil water content	theta sat	%volume					x	x							x	x	x	x	Р
Soil water storage (retention capac	it Ssoil	mm					x	x							Р	Р	Р	x	x
Saturated hydraulic conductivity	Ksat	mm/h													x	x	x	x	x
Infiltration	f	mm/h	x	x			x	x		x	x				х	x	x	Р	x
Percolation/seepage	s	mm/h	x				x	x										Р	x **
Recharge	gwr	mm/h	x			x	x	x										x	
Groundwater level	gwl	m	x	Р	Р	Р	x	x				x						x	
Stream base flow	Qb	m3/s		x	x					x	x		x	x					x
	CATECODY		SWLCIM	SWICH	SWICH	SWICH	SIMCIM	SMCM	CIA/	CIA/	CIA/	SIA/	SIA	SIA/	Soilly	Soilly	Soilly	Veg-Seilly	Vog-Soilla
	CATEGORT:	number	1	2	2	300-000	500-600	500-600	1	2	2	300	500	500	1	2	2	1	5
if bold: easier to measure/estimate		number:	1	2	3	4	5	0	1	P=	Primary Indi	icator	5	0	IDENTIFY i	f:	3	4	5
										S =	Secondary I	ndicator			Measured vs Estimated (eg modelled)				

Monitoring Example 1: UK Littlestock Brook NFM

Littlestock Brook Natural Flood Management project:

- 15 <u>field corner bunds</u> (can store up to 30,000 m³ of water)
- 27 woody leaky dams (or log jams or leaky barriers)
- 14 nutrient retention ponds
- 14.4 ha riparian woodland and others

Bank-full leaky woody dam linked to FSA (flood storage area such as field corner bund)

2007 floods: 2016-21 project for 16 km² agricultural catchment in upper Thames basin, 20 ha of measures

SpongeScapes:

- 1. Flood mitigation provided by individual & combined measures?; e.g., dam & bunds
- 2. How will measures evolve?
- 3. What are **co-benefits** of sediment capture and aquatic biodiversity?

Monitoring Example 1: Design & Preliminary Results

Littlestock Brook monitoring by SpongeScapes:

Floodplain reconnection with surface storage capacity & drainage outflow

- Key to monitor: water level in ponds, bunds & stream (upstream and downstream of features)
- Low-cost (~e500) telemetered sensors for water level
- Gauging to determine water level-flow relation
- **Bathymetry surveys (storage volume)**
- Soil moisture: ground sensors + drone/satellite
- Surveys: aquatic macroinvertebrate & macrophytes

Field considerations – a selection

Needed to relocate water level sensor due to shade

4000

3000

2000

- Soil moisture sensors affected by farm operations
- **Collaboration on leaky dam surveys; citizen science**

Monitoring Example 2: UK agricultural sites

- Selection of LANDWISE NFM (2019-22) sites
 - **o** Traditional rotational crop
 - Regenerative Agricultural Practices (buffer strips, cover crop, controlled traffic) versus traditional
 - \circ Wooded versus grassland
- Key environmental challenge: mostly flooding/waterlogged fields
- Major co-benefit(s) studied: Soil Organic Matter (SOM)

How land use and **soil management affects soil properties**, impacting flood risk

- LW & SpongeScapes (2023-27): How much water can the soil hold? (floods & droughts)
- SS innovation: seasonal soil monitoring by Cosmic-Ray Neutron Sensor rover and RS (UAV/EO); start by analysing longer-term soil water datasets

Monitoring Example 2: Design

Agricultural Practices monitoring by SpongeScapes: Soil water storage capacity + infiltration & percolation

- Key to monitor: (root zone) soil moisture storage
- Low-cost (~e500) soil moisture sensors (TDRs/TDTs)
- Cosmic Ray Neutron Sensors (CRNS) COSMOS-UK
- Remote sensing for soil moisture: satellite workflows (+ testing UAV) + ground sensors (CRNS, TDRs)
- Soil surveys (before/after)
- Field considerations a selection
- Representative soil sampling design needs experience!
- Biases: sample location, sampling method; e.g., Ksat
- Assess impact of farming management: initial versus final condition

Monitoring Example 2: Preliminary Results

-10 &

-207

UK Research and Innovation SpongeScapes has received funding from the European Union's Horizon Europe research and innovation programme under Grant Agreement n°101112738 and from the UK Research and Innovation/HM Government.