

Improving sponge functioning at the landscape scale

Welcome to the webinar! We will start shortly

House Rules

Unmute

Start Video

- This webinar will be **recorded**, and the recordings will be shared
- Mute yourself: Keep your microphone muted • when you are not speaking
- If you want to **ask a question**... • 16 K 3 .1 \bigcirc 1 Polls Participants Chat Share Screen Q&A More

Record

Raised Hand

End

Agenda

- **11.00** Welcome and entrance of participants, introduction to the speakers (UL)
- **11.05** Sponge functioning at landscape scale : general concepts Ellis Penning (Deltares)
- **11.15 Sponge measures** Benoit Fribourg-Blanc (OiEAU)
- **11.35** Sponge measures at landscape scale Ellis Penning (Deltares)
- **11.45 Q&A** (UL)

11.55 Closing remarks

(UL)

First in a series (and which ones are following afterwards, every 3 months)

Improving sponge functioning at the landscape scale: general concepts

Ellis Penning

Coordinator SpongeScapes, Co-coordinator SpongeWorks

Benoit Fribourg-Blanc

SpongeScapes WP1 lead, SpongeWorks WP2 lead

3 key principles, 1 motto

'Green where you can, Grey where you must'

Up until the early 2000s, the UK's flood and coastal erosion strategy was heavily focused on defence and hard engineering solutions, primarily involving the construction of physical barriers to prevent flooding. However, this approach has evolved significantly over the past two decades.

Today, the strategy emphasises resilience and adaptation through a basket of measures, including natural flood management (NFM).

NFM approaches deliver multiple benefits, such as sustainable flood resilience, biodiversity gains, improvements in water quality, carbon capture, and enhanced health and wellbeing for communities.

Sponge functioning - hypothesis

SpongeScapes, SpongeBoost, SpongeWorks

• HORIZON-MISS-2022-CLIMA-01-05 - Boost the sponge function of landscape as a way to improve climateresilience to water management challenges

(each ~ 3MEuro RIA, since October 2023 & February 2024)

 HORIZON-MISS-2023-CLIMA-OCEAN-SOIL-01-01 – Mission Climate adaptation, Mission Ocean & waters and Mission Soil Deal for Europe – Joint demonstration of an integrated approach to increasing landscape water retention capacity at regional scale (15 Meuro IA, since Sept 2024)

23 in-depth cases in different climate zones + 8 (?) to come

SpongeWorks

on-the-ground implementation:

- 19 types of sponge measures
- 4,000 hectares of land
- 47 kilometres of rivers
- 800+ individual farms
- 300+ stakeholders

?

Let's watch a movie!

https://www.youtube.com/watch?v=1-l5y2N0hX0

Over to Benoit

How about the evidence?

While there is **substantial scientific evidence supporting the sponge functioning concept**, the effectiveness of landscape-based flood and drought mitigation may vary depending on the specific local conditions, climate, and land use practices. **It's essential to consider the local context and consult with experts** when implementing landscape management strategies for water regulation and risk reduction.

database	#cases	F&D	F&D&B	F&B	D&B
Nwrm.eu	140	8	5	5 18	8 7
World Bank	72	12	7	7 23	5 9

<u>http://www.nwrm.eu/</u> https://naturebasedsolutions.org/projects

(Penning et al, 2023 - doi:10.1017/wat.2023.12)

Study	Sponge Measure	Location/ Region	Observed (O) or Modelled (M) Effect	Flood & Drought Management Benefit
Majidi et al.	Water retention	General	Reduced flood volume, peak, and	Flood reduction,
(2019); Ruangpan	ponds, vegetated	(Urban,	delay; increased infiltration and soil	increased water
et al. (2020)	buffer strips	Agricultural)	water retention.	retention and
				infiltration.
Lockwood et al.	Offline ponds	Tone &	Attenuation of peak flows from 3%	Flood reduction
(2022)		Parrett	when ponds are filled by rain/runoff	
		catchments,	to 7% when filled from channel [O]	
		SW England		
Nauta et al.	Wetland	Kylldal	12-24% reduction in annual	Flood reduction,
(2024), Waterloo	restoration	catchment,	maximum peak flows; increased low	drought risk
et al. (2019)		Germany	flows by up to 21% in summer/fall,	reduction.
			suggesting drought risk reduction. []M	
Kurki-Fox et al.	Wetlands, river	Neuse River	6-9% reduction in runoff, 5%	Flood and
(2022)	basin afforestation	Basin, North	reduction in peak flow at sub-	drought risk
		Carolina,	watershed level.	reduction.
		USA		
Frédéric Paran	Wetland	General	Limited effect on summer low flows	Drought and
(2024)	restoration		but effective in retaining high flows	flood flow
			after dry periods.	regulation,
				seasonal flow
				retention.
Ottermann et al.	restored	Rhine basin	Reduced peak flows 5-8%	Flood reduction
(2017)	floodplains,			
	wetlands,			
at ut ut u	peatlands			
Shuttleworth et a.	Peat restoration	N England	27% reduction in peak flows, longer	Flood reduction
(2019) URBAN			lag times >100% increase [O, M]	
Baggio et al	Rain gardens bio-	Veneto	>98% runoff retention in two years	Pluvial flood
(2023)	retention areas	Region Italy	of data even for extreme rainfall	mitigation
(2020)		inegrou, icery	events (up to 15-year return periods).	stormwater
				retention.
Cerema (2020)	Schoolyard	France	Reduces stormwater runoff and	Flood reduction
	greening, de-		provides co-benefits like heat	heat island
	impermeabilizatio		reduction and improved health for	mitigation, health
	n		children.	benefits.
Kõiv-Vainik et al.	Bioretention	General	40% reduction in peak discharge	Flood reduction,
(2022)	systems (ponds,		(though data on real-world runoff	stormwater
	rain gardens,		retention often missing, especially in	management.
	swales)		cold climates).	
Kõiv-Vainik et al.	Permeable	Warm and	75-80% reduction in stormwater	Flood reduction,
(2022)	pavements	wet climate	runoff.	stormwater
		conditions		management.
Quagliolo et al.	Green parking,	Rapallo,	69-71% average water retention	Urban flood
(2021)	rain gardens	Italy	capacity in urban scenarios.	vulnerability
	1	1	1	reduction

In the field you hear things you don't see in literature

Some nice numbers:

- Infiltration rate from 4,5 min to 23 seconds
- Bird diversity from 44 to 89
- 17KEuro woody dam or 4Meuro dredging project
- From 16,5 days in 1850 to 9 hours now (lowland stream of sandy soil and 50km)
- 'the only grazing place left'
- 'peace of mind'
- 'i've not been flooded this year'

Photo: David Gasca – Blenheim Estate

Gaps in evidence

- 1. Reported sponge measures are often not evaluated for a range of hydro-meteorological events under current and future conditions;
- 2. Surface water, groundwater, and soil hydrology are often analysed separately;
- 3. Analyses of the combined effects of sponge measures on hydrology, cobenefits, dis-benefits, and trade-offs are often lacking or incomplete;
- 4. The evidence base for a good understanding of the combined effects of multiple measures at landscape scale is lacking;
- 5. The role of maintenance over time and longevity of measures is hardly known;
- 6. The replicability of measures depends on local contexts that are poorly reported on;
- 7. The integration of quantification of system understanding with stakeholder engagement on a catchment scale is lacking;
- 8. Local knowledge, success stories and lessons learned are poorly communicated outside of the local context.

Sponge principles

There are three main sponge principles:

1. Reduce the formation of runoff by intercepting rainfall where it falls and stimulating infiltration into the soil,

2. Slow down the runoff that has formed on the surface, is drained from groundwater, or is channelised in streams, and

3. Temporarily store excess water in the soil, groundwater or surface water bodies.

https://www.spongescapes.eu/deliverables

Hydrological processes & NbS at the core

Penning et al, 2023 https://doi.org/10.1017/wat.2023.12

Quantifying Sponge Measures for Floods AND Droughts AND Biodiversity

Modelling tools for system understanding:

Limburg july 2021 event (ca. 130mm/48 hr)

Legend • event discharge • rain gauge • groundwater well • city Geul Height (m.a.s.l.) 374 42

What is the role of history + type of event (Geul Case Study)

Sponge functioning is highly dependent on the

pre-event history

- Wet
 - --> little additional sponge action possible
- o dry
 - --> large sponge effect possible

type of rain event

 In very extreme rain events, the sponge always becomes full and the effect of land use etc. decreases Up to factor 10 difference between discharge depending on dry or wet history

Figuur 4.14 Met Wflow-sbm Gesimuleerde afvoeren met Wflow van een neerslag gebeurtenis (98.4 mm/24 uur) voor droge en natte omstandigheden voor de verschillende scenario's.

Approach towards upscaling sponge landscapes

Good system understanding:

- Evaluate for different hydrometeorological events
- Evaluate for more than water quantity
- Use both technical indicators and demand indicators
- Evaluate success stories

Implement together

- Apply in new cases and learn with stakeholders
- Co-design with stakeholders at landscape scale

Knowledge brings nuance and realism

Evaluate for:

- Different types of events
- Primary benefits, co-benefits and trade-offs
- Combinations of measures in overarching strategies

Evaluate with stakeholders:

- what is feasible and acceptable?
- what is useful for you and what creates significant effects on larger scales?
- what is the relation between upstream and downstream neighbours?

Use both technical and demand indicators

Tell succes stories and lessons learnt

Upcoming Webinars

Date	Торіс
May 2025	Monitoring sponge measures: indicators and approaches
September 2025	Modelling sponge measures at landscape scale
November 2025	Co-benefits and trade-offs of sponge measures and strategies
February 2026	Integrating sponge thinking into planning: co-designing sponge strategies

Deltares

Thank you!

Ellis Penningellis.penning@deltares.nlBenoît FRIBOURG-BLANCb.fribourg-blanc@oieau.fr

in @spongescapes; @spongeworks

www.spongescapes.eu www.spongeworks.eu

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreements n° 101112738 and n° 101156116 from the UK Research and Innovation.

Funded by the European Union